

Published on Web 07/27/2004

Luminescent Heteronuclear $Au_{5}^{I}Ag_{8}^{I}$ Complexes of $\{1,2,3-C_{6}(C_{6}H_{4}R-4)_{3}\}^{3-}$ (R = H, CH₃, Bu^t) by Cyclotrimerization of Arylacetylides

Qiao-Hua Wei, Li-Yi Zhang, Gang-Qiang Yin, Lin-Xi Shi, and Zhong-Ning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

Received May 8, 2004; E-mail: czn@ms.fjirsm.ac.cn

Recent interest in group 11 metal alkynyl complexes has primarily focused on their manifold emissive properties.^{1–4} Aiming at attaining photoluminescent Au^I–Ag^I heterometallic alkynyl complexes,⁵ one feasible approach is to incorporate polymeric silver arylacetylide (AgC=CC₆H₄R-4)_n with binuclear Au^I components [Au₂(μ -dppm)₂(MeCN)₂]²⁺ (dppm = bis(diphenylphosphino)methane).⁶ Remarkably, the reaction allows isolation of Au^I–Ag^I heterometallic complexes [Au₅Ag₈(μ -dppm)₄{1,2,3-C₆(C₆H₄R-4)₃}-(C=CC₆H₄R-4)₇]³⁺ (R = H **1**, CH₃ **2**, Bu' **3**) with unprecedented trianion μ ₅-{1,2,3-C₆(C₆H₄R-4)₃}³⁻ derived from cyclotrimerization of arylacetylide C=CC₆H₄R-4.

As shown in Scheme 1, complexes 1-3 were prepared by reaction of $[Au_2(\mu-dppm)_2(MeCN)_2]^{2+}$ with three equivalent $(AgC \equiv CC_6H_4R-4)_n$ in dichloromethane with exclusion of light to give green solutions. Layering diethyl ether onto the acetonitrile solutions without exclusion of light gave the products as red crystals in 17-54% yields (based on Ag). It is noteworthy that reaction of $[Ag_2(\mu-dppm)_2(MeCN)_2]^{2+}$ with $(AuC \equiv CC_6H_4R-4)_n$ also affords complexes 1-3 in lower yields.

Scheme 1

The structure of compound $1(PF_6)_3$ was determined by X-ray crystallography. It contains five Au^I and eight Ag^I centers linked together by bridging dppm, phenylacetylide C=CC₆H₅, and trianion $\{1,2,3-C_6(C_6H_5)_3\}^{3-}$ as depicted in Figure 1. The Au1-Au3 and Ag2-Ag4a distances are 3.1490(7) and 3.1674(18) Å, respectively, implicating that intramolecular AuI-AuI and AgI-AgI interactions are operative.7 Extensive ranges of Au-Ag (2.7434(14)-3.1490-(15) Å) contacts are present in the Au₅Ag₈ cluster core.⁷ Of the seven phenylacetylides C=CC₆H₅, three adopt μ_3 - $\eta^1(\sigma)$ and four exhibit μ - $\eta^1(\sigma)$, $\eta^2(\pi)$ bonding modes. The μ_3 - η^1 -C=CC₆H₅ is bound to one Au^I and two Ag^I centers, whereas the μ - η^1 , η^2 -C=CC₆H₅ is bonded to Au^I and Ag^I centers via $\eta^1(\sigma$ -bonding) and $\eta^2(\pi$ -bonding) coordination, respectively. The bond lengths of $Au{-}C_{\text{acetylide}}$ and Ag-Cacetylide are in the range 2.023-2.035 and 2.318-2.576 Å, respectively. The trianion $\{1,2,3-C_6(C_6H_5)_3\}^{3-}$ displays an unusual μ_5 -bonding fashion bound to three Au^I and two Ag^I centers as shown in Figure 2. While the three Au-Caryl (2.011 and 2.084 Å) bonds are almost coplanar with the trianionic phenyl ring, the two Ag-Caryl (2.672 Å) bonds are oriented in an anti conformation (Figure

Figure 1. View of complex **1** with atom labeling scheme (30% thermal ellipsoids). Phenyl rings on the phosphorus atoms are omitted for clarity.

Figure 2. View of μ_{5} -{1,2,3-C₆(C₆H₅)₃}³⁻ coordination, showing an *anti*orientation of the two Ag-C_{arvl} bonds.

2) and the atoms Ag2 and Ag2a are located up and down this phenyl ring 2.393 Å, respectively. It has been established that trianionic aryl derivatives usually adopt 1,3,5-C donors bound to metal ions.^{8,9} Thus, the μ_5 -coordination of trianion {1,2,3-C₆(C₆H₅)₃}³⁻ bound to Au₃Ag₂ centers by 4,5,6-C donors (Figure 2) is unprecedented. The four dppm link eight Ag^I centers to form four binuclear Ag₂-(μ -dppm) units. The five Au^I centers are all in a linear σ (η^1) coordination (C-Au-C = 173.2-180.0°), adopting acetylide and aryl C donors. Depending on the chromophores, the Ag^I centers, however, afford different geometries built by acetylide and/or aryl C and diphosphine P donors. The centers Ag1 and Ag1a, Ag2 and Ag2a, Ag3 and Ag3a, and Ag4 and Ag4a afford distorted V-shaped, T-shaped, triangle-planar, and linear geometries, respectively.

The ES-MS show $[M-(SbF_6)_3]^{3+}$ as the principal peaks for $1(SbF_6)_3-3(SbF_6)_3$ (Figures S1–S3, Supporting Information). Typical $\nu(C=C)$ stretching frequencies occur at ca. 2050 cm⁻¹ in the IR spectra of $1(SbF_6)_3-3(SbF_6)_3$.⁶ The ³¹P NMR spectra in CD₃-CN reveal characteristic Ag–P and P–P couplings with J_{Ag-P} and

 J_{P-P} in the ranges 450–720 and 35–45 Hz, respectively (Figures S4–S6, Supporting Information). Four sets of multiplet signals with equal intensity are observed, coinciding with the presence of four inequivalent P donors in the solid structures.

The UV-vis spectra of compounds $1(\text{SbF}_6)_3-3(\text{SbF}_6)_3$ are characterized by high-energy absorptions at 230–290 nm and lowenergy bands at ca. 365 and 440 nm, respectively. With the excitation $\lambda_{\text{ex}} > 350$ nm, compounds $1(\text{SbF}_6)_3-3(\text{SbF}_6)_3$ emit intense red luminescence ($\lambda_{\text{em}} = 630-680$ nm). By comparison of the emission spectra of compounds $1(\text{SbF}_6)_3-3(\text{SbF}_6)_3$ (Table S3, Supporting Information), it is observed that introducing an electron-donating substitute such as methyl (2) and *tert*-butyl (3) to phenylacetylide results in a slight blue shift of the emission band. The emissive origin is therefore tentatively assigned as an admixture of MLCT (Au₅Ag₈ \rightarrow C=CC₆H₄*R*-4) transition and a metal cluster-centered excited-state modified by metal-metal interactions.^{1b,6b,7b}

It has been demonstrated that cyclotrimerization of substituted alkynes catalyzed by transition-metal complexes usually gives 1,3,5and/or 1,2,4-trisubstituted benzene derivatives in high selectivity.¹⁰ To our knowledge, isolation of 1,2,3-trisubstituted counterparts by this approach, however, has been attained in few cases.^{11–13} It has been revealed that thermal cyclotrimerization of *tert*-butylfluoroacetylene ((CH₃)₃CC=CF)¹² and perchlorophenylacetylene (C₆-Cl₅C=CCl)¹³ can afford 1,2,3-tri*-tert*-butyltrifluorobenzene and perchloro-1,2,3-triphenyl-benzene, respectively. A reaction mechanism involved in generation of intermediates such as cyclobutadiene and Dewar benzene derivatives was proposed on the basis of a series of experimental and theoretical evidences.^{11–13}

ES-MS (Figure S7, Supporting Information) of the green intermediate is similar to that of compound $1(\text{SbF}_{6})_3$ with high abundance ratio of molecular ion peaks $[M-(\text{SbF}_6)_3]^{3+}$. It is likely that the green substances formed by reaction of $[\text{Au}_2(\mu\text{-dppm})_2-(\text{MeCN})_2]^{2+}$ with $(\text{AgC}=CC_6\text{H}_4\text{R}-4)_n$ afford Dewar benzene intermediates (Scheme 2), which convert gradually into the red compounds $1(\text{SbF}_6)_3-3(\text{SbF}_6)_3$ when put aside without exclusion of light. With the excitation $\lambda_{ex} > 350$ nm, the green intermediate of compound $1(\text{SbF}_6)_3$ affords strong yellow-green luminescence at ca. 560 nm (Figure S8, Supporting Information) in acetonitrile. Upon formation of compound $(\text{SbF}_6)_3\mathbf{1}$, a red shift (ca. 70–120 nm) in the emission wavelength relative to the green Dewar benzene intermediate is likely ascribed to the modification of metal-metal contacts involved.^{7b,14}

In summary, the present study describes preparation and characterization of the unusual Au^I₅Ag^I₈ complexes by highly selective cyclotrimerization of metalated 1-yne to afford the {1,2,3-C₆-(C₆H₄R-4)₃}³⁻ trianion with an unprecedented μ_5 -bonding mode. Further work is underway to attain crystallographic characterization of the green intermediates.

Acknowledgment. This work was supported financially by NSFC (20171044, 20273074, and 20490210), NSF of Fujian Province (E0420002), and the national basic research program (001CB108906), China.

Supporting Information Available: Detailed experimental procedures including preparation and characterization of compounds $1(\text{SbF}_{6})_3$ - $3(\text{SbF}_6)_3$; the positive ES-MS of compounds $1(\text{SbF}_6)_3$ (Figure S1), $2(\text{SbF}_6)_3$ (Figure S2), and $3(\text{SbF}_6)_3$ (Figure S3); the ³¹P NMR spectra of compounds $1(\text{SbF}_6)_3$ (Figure S4), $2(\text{SbF}_6)_3$ (Figure S5), and $3(\text{SbF}_6)_3$ (Figure S6); the ES-MS of the green intermediate of $1(\text{SbF}_6)_3$ (Figure S7); the absorption and emission spectra of $1(\text{SbF}_6)_3$ and its green intermediate (Figure S8); the X-ray crystallographic file in CIF format for the structure determination of compound $1(\text{PF}_6)_3$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Yam, V. W. W. Acc. Chem. Res. 2002, 35, 555-563. (b) Yam, V. W.
 W.; Lo, K. K. W.; Wong, K. M. C. J. Organomet. Chem. 1999, 578, 3-30. (c) Chao, H. Y.; Lu, W.; Li, Y.; Chan, M. C. W.; Che, C. M.; Cheung, K. K.; Zhu, N. J. Am. Chem. Soc. 2002, 124, 14696-14706. (d) Lu, W.; Zhu, N.; Che, C. M. J. Am. Chem. Soc. 2003, 125, 16081-16088.
- (2) (a) MacDonald, M. A.; Puddephatt, R. J.; Yap, G. P. A. Organometallics 2000, 19, 2194–2199. (b) Hunks, W. J.; MacDonald, M.-A.; Jennings, M. C.; Puddephatt, R. J. Organometallics 2000, 19, 5063–5070.
- (3) (a) Bruce, M. I.; Hall, B. C.; Skelton, B. W.; Smith, M. E.; White, A. H. J. Chem. Soc., Dalton Trans. 2002, 995–1001. (b) Rais, D.; Yau, J.; Mingos, D. M. P.; Vilar, R.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 2001, 40, 3464–3467. (c) Higgs, T. C.; Parsons, S.; Bailey, P. J.; Jones, A. C.; McLachlan, F.; Parkin, A.; Dawson, A.; Tasker, P. A. Organometallics 2002, 21, 5692–5702.
- (4) (a) Bardaji, M.; Laguna, A.; Jones, P. G. Organometallics 2001, 20, 3906–3912.
 (b) Bardaji, M.; Jones, P. G.; Laguna, A. J. Chem. Soc., Dalton Trans. 2002, 3624–3629.
- (5) (a) Abu-Salah, O. M. J. Organomet. Chem. 1998, 565, 211–216. (b) Yam, V. W. W.; Cheung, K. L.; Cheng, E. C. C.; Zhu, N.; Cheung, K. K. J. Chem. Soc., Dalton Trans. 2003, 1830–1835.
- (6) (a) Wei, Q. H.; Yin, G. Q.; Ma, Z.; Shi, L. X.; Chen, Z. N. Chem. Commun. 2003, 2188–2189. (b) Wei, Q. H.; Yin, G. Q.; Zhang, L. Y.; Shi, L. X.; Mao, Z. W.; Chen. Z. N. Inorg. Chem. 2004, 43, 3484–3491.
- (7) (a) Pyykkö, P. Chem. Rev. 1997, 97, 597–636. (b) Fernández, E. J.; Gimeno, M. C.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Pyykkö, P.; Sundholm, D. J. Am. Chem. Soc. 2000, 122, 7287–7293.
- (8) (a) Hunter, A. D. Organometallics 1989, 8, 1118–1120. (b) Lau, J. P. K.; Lin, Z. Y.; Wong, W. T. Angew. Chem., Int. Ed. 2003, 42, 1935–1937.
- (9) (a) Vicente, J.; Lyakhovych, M.; Bautista, D.; Jones, P. G. Organometallics 2001, 20, 4695–4699. (b) Sumby, C. J.; Steel, P. J. Organometallics 2003, 22, 2358–2360. (c) Buchwald, S. L.; Lucas, E. A.; Davis, W. M. J. Am. Chem. Soc. 1989, 111, 397–398.
- (10) (a) Schore, N. E. Chem. Rev. 1988, 88, 1081–1119. (b) Tagliatesta, P.; Floris, B.; Galloni, P.; Leoni, A.; D'Arcangelo, G. Inorg. Chem. 2003, 42, 7701–7703.
- (11) (a) Dietl, H.; Reinheimer, H.; Moffat, J.; Maitlis, P. M. J. Am. Chem. Soc. 1970, 92, 2276–2285. (b) Whitesides, G. M.; Ehmann, W. J. J. Am. Chem. Soc. 1969, 91, 3800–3807.
- (12) (a) Viehe, H. G.; Merényi, R.; Oth, J. F. M.; Valange, P. Angew. Chem., Int. Ed. Engl. 1964, 3, 746–747. (b) Viehe, H. G.; Merényi, R.; Oth, J. F. M.; Senders, J. R.; Valange, P. Angew. Chem., Int. Ed. Engl. 1964, 3, 755–756. (c) Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1965, 4, 746– 751.
- (13) Ballester, M.; Castaner, J.; Riera, J.; Tabernero, I. J. Org. Chem. 1986, 51, 1413-1419.
- (14) (a) Lee, Y. A.; McGarrah, J. E.; Lachicotte, R. J.; Eisenberg, R. J. Am. Chem. Soc. 2002, 124, 10662–10663. (b) Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H.; Fackler, J. P., Jr. J. Am. Chem. Soc. 2001, 123, 11237–11247. (c) Fung, E. Y.; Olmstead, M. M.; Vickery, J. C.; Balch, A. L. Coord. Chem. Rev. 1998, 171, 151. (d) Coker, N. L.; Krause Bauer, J. A.; Elder, R. C. J. Am. Chem. Soc. 2004, 126, 12–13.

JA047302B